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Nonlinear excitations in classical ferromagnetic chains 

K A Long+§ and A R Bishop$ll 
+ Department of Physics, University of Surrey, Guildford GU2 5XH, England 
$ Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, England 

Received 10 November 1978 

Abstract. General single solitary-wave excitations are determined for the classical 
continuum Heisenberg chain in the presence of external magnetic and anisotropy fields. 
These include both domain walls and pure solitons as examples. Conditions for propagation 
are carefully analysed. The complete integrability of the zero-anisotropy limit is suggested 
as a basis for (i) controlled singular perturbation theory and (ii) formulation of classical 
statistical mechanics in a natural configurational (nonlinear normal mode) representation. 

1. Introduction 

There is a developing interest (Nakamura and Sadada 1974, Lakshmanan et a1 1976, 
Lakshmanan 1977, Tjon and Wright 1977, Lamb 1976, 1977, Takhtajan 1977) in the 
one-dimensional classical7 Heisenberg ferromagnet and particularly in fully nonlinear 
solutions to the spin equations of motion in the continuum limit. Most interestingly, it 
has been possible (in the continuum limit) to solve the arbitrary initial value problem 
exactly since the equations of motion for the spin variables themselves (Takhtajan 
1977) (or for the energy and momentum densities (Lakshmanan 1977, Lamb 1976)) are 
soluble by the inverse spectral transform method: the continuous Heisenberg chain is 
completely integrable. The energy and momentum density excitations take the form of 
strict envelope soliton solutions (Scott et a1 1973, Bullough et a1 1978), which are 
simply related to those of the nonlinear Schrodinger equation, and the general solution 
follows from the general N-soliton solution. 

The complete'solutions indicated above are so far limited to the isotropic Heisen- 
berg chain. However, it is well known (Bishop et a1 1977) that the presence of local or 
exchange anisotropy will admit a rather different type of excitation, namely a domain 
wall. Experimentally and theoretically relevant questions arise concerning the possible 
co-existence of both solitons and walls and of more general composite excitations, 
particularly in view of accessible quasi-one-dimensional classical spin systems (Steiner 
et a1 1976) (although the discussion applies formally to planar excitations in three 
dimensions). 

In this paper we begin a study of these questions by considering the possible single 
solitary-wave solutions to the general continuum Heisenberg ferromagnetic chain, 
including uniaxial anisotropy and an external magnetic field. These solutions certainly 

I Present address: Institut fur Transurane, 75 Karlsruhe 1, Postfach 2266, West Germany. 
11 Present address: Theoretical Division, Los Alamos Scientific Laboratory, NM 87545, USA, 
F We will not consider solutions of the quantum (spin-!) X-Y-Z model which is also of current interest as a 
technical device for solving equivalent models in statistical mechanics and field theory (e.g. Luther 1976). 
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1326 K A Long and A R Bishop 

do not exhaust all excitation types, and it is intended to report on others in future 
publications. Nevertheless, the present analysis serves to clarify current literature and 
provides some suggestive results concerning the compatibility of soliton and wall 
excitations. 

The equation of motion we study is (Landau 1965) 

as/at  = JS x (a2s/ax2) + YS x no+ ( K / s ~ ) s  x nS,, (1.1) 

where S(x, t )  is the magnetisation, no is the applied magnetic field, n is a unit vector in 
the z-direction, J is the exchange constant, K / S 2  is the (local uniaxial) anisotropy 
constant, and y is the gyromagnetic ratio. 

In 5 2 we show that equation (1.1) has single solitary-wave solutions and find their 
analytic form in various cases, including the strict solitons when K = 0. In D 3 we show 
domain walls propagating with a constant velocity are allowed only under special 
circumstances and only when a (phenomenological) damping is included in equation 
(1.1). The work of Walker (1963) and Enz (1964) on propagating walls is critically 
re-examined and formulated in the context of nonlinear physics emphasised here. 
Section 4 contains our conclusions and further discussion, particularly of possible 
incorporation of these nonlinear modes in classical statistical mechanics. 

2. Single solitary waves: domain walls and solitons 

Following the analysis of Tjon and Wright (1977) we write the Hamiltonian density 
from which equation (1.1) derives in spherical coordinates as 

(2.1) 

Here SI = S sin 8 cos 4, S2 = S sin 8 sin 4, SJ = S cos 8 = SU(x), and no is the applied 
magnetic field, where y has been absorbed in 0,. The linear and angular momentum 
operators are constants of the motion, and we are free to impose the constraints 

%(XI = $Js2[(aU/ax)’(l - U’)-’ + (a4/ax)’(i - U’) + SR,(I - U)]. 

P = Po, M = MO, (2.2) 
where 

+m 

+m 

(2.3) 

(2.4) 

Introducing Lagrangian multipliers RI and Y, the governing equations of motion can 
now be obtained by minimising 

I(&, v ;  U, d ) = j  ~ ( x ) d x - n l ( M - M o ) - v ( P - P o )  (2.5) 

with respect to (U, d), subject to the constraints (2.3) and (2.4). RI and Y will play the 
roles of angular and linear velocity in 02.3 below, where we exhibit solutions in the 
essentially solitary-wave form 

U(X,  t )  = U(X - vt), 

4(x, t )  = n1t +&x - vt) .  
(2.69 
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For the moment consider the equations of motion following from the minimisation 
of (2.5): 

au 
ax 

a4 [ad:B ax 

0 = J S 2  - - (1 - U2)) +sv-, ax a (a4 ax 

o = JS' 7 (sin e)-' - u ( 3 ]  -S(Ro+n,)+sv-. 

Including a local anisotropy term (cf (1.1)) changes (2.8) to 

(2.7) 

where K = ;JS27. We have yet to specify boundary conditions which will allow us to 
determine unique solutions to (2.7) and (2.8) or (2.9). Since we are interested in 
studying both domain wall and pulse solitary-wave solutions, we integrate (2.7) and 
(2.9) leaving the integration constants as arbitrary. 

Integrating (2.7) once gives 

o = - ~ s ~ ( a 4 / a x ) ( i -  u ~ ) - s v u + u ~ ,  (2.10) 

with the integration constant a l  given by 

If U = f 1 and x + -03, then al  = *Sv. If 4, = 0 and v = 0, then a l  = 0. If v # 0, then 
4, # 0, since a l  # S v ( x )  because a l  is constant. (We omit the trivial case U = constant.) 
Substituting (2.11) into (2.9) and multiplying by sin de,, we integrate again to obtain 

1 
2 

- R U  -- 7 cos 26 + a2,  (2.12) 

where a2 is a second integration constant and we have used the notation R = no +RI .  
If a l = S v  and 8+0  a s x + m ,  then (2.12) gives (&=M/ax)  

where V = v/JS. With the further boundary condition 8, = 0 and 6 = 0, as x + -03, we 
have a2 = R+;r, so that (cf Tjon and Wright 1977) 

(2.14) 

If we seek to impose 180" domain wall boundary conditions, however, we see that 
6 = T( U = -l), for x + + 00 implies 16, I +CO. We thus conclude immediately that there 
are no single 180" domain wall solutions in general. Such excitations are in fact possible 
only in one special limit (see Q 2.1 below). The point we wish to emphasise here is that 
the factor (1 - U')-' in (2.11) excludes domain solutions unless V = 0 and 4, = 0. 
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2.1. Static domain wall : anisotropy field 

One limit in which domain solutions are very familiar (Bishop et a1 1977) is for V = 0 
and a =  0. Then (2.14) becomes 

(2.15) 

and the troublesome denominator is removed. Thus 8, can be zero as x + - ~3 ( U  = + 1)  
and also as x + +a (U = -1) .  Integration follows simply upon the substitution p = $8 

e5 = (1  - u)(i + u ) ~  

and y =tan p, giving 

y = exp(x71’2) = tan&), 

i.e. 

e = c0s-l tanh( * x ~ ” ~ ) .  

This is a static 180” domain wall solution (see figure 1) .  

(2.16) 

(2.17) 

Figure 1. Zero-velocity 2s-walls with finite magnetic (a) and anisotropy (7) ..-.Is (8 2 ). 
Also included for comparison are the reflected solution for = 0’0027 (cf a-pulse, $2.3) 
and the a-wall with no magnetic field (82.1). The latter should be compared with a 
displaced form of the f in i te4  curves. Full curve: static a- and 2a-walls (symmetric about 
x o ) .  Dotted curve: reflected solution for n / ~  = 0.002 (0 2.4). Broken curve: a-wall (n = 0) 
(I 2.1). 

2.2. Magnetic and anisotropy fields : static solution 

If V = 0 but a, T # 0, we can use the same substitutions as in §2.1 to express (2.14) as 

4/3f = e,’ = 40 sin’ p + 47 sin2 p cos2 p. 
With y =tan p we find easily 

y = a cosech( * aO”2x),  

i.e. 

8 = 2 tan-’[a cosech( a121’2x)], 

with 

a =(1+T/n)’”.  

(2.18) 

(2.19) 
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Note how this solution is apparently in a quite different sector of solution space than 
(2.17). It is a symmetric 27r-wall with an interesting internal structure (see figure 1). 
One way of viewing the solution is as a state of two (contracted) single 7r-walls (52.1) 
locked together by the field R. For as R / T  + 0, the shelf length w 1  + 03 and the single 
wall width w2 tends to the wall width in 52.1: we thus have two infinitely separated 
conventional 7r-domain walls. In general w1 and w2 are both functions of T and R. 
However, in the opposite limit of weak anisotropy, T/R + 0, w1 + 0 and w2 tends to a 
characteristic width for the stationary limit of a strict soliton pulse which we derive 
below (0 2.3). This composite wall structure is restricted to V = 0 (see 5 2.4) (at least as 
a pure solitary wave). On symmetry grounds we might expect an alternative structure of 
a pulse of amplitude 7r (see broken curve in figure 1). This solution does indeed exist 
and is able to move (thereby allowing a continuous deformation), as we will show in 
5 2.4). Such a structure will be viewed (at V = 0) as a bound state 7r-wall and 
7r-anti-wall. 

The ability of the field to stabilise a two-7r-wall state is interesting. In the absence of 
any lattice discreteness two walls of type (2.17) (i.e. zero field) are well known 
(Rubinstein 1970) to suffer a mutual exponentially short-ranged repulsion, so that they 
can be static only at infinite separation. The finite field overcomes this repulsion and 
stabilises the wall at increasingly short separation as R/T  increases. Further, the field’s 
main effect is to distort the two-wall solution near 6=7r (so as to satisfy boundary 
conditions). Indeed the gradient at 6 = 7r(d8/dx = -2R”’) is totally independent of T.  

The distorted region increases with R/T,  but for very small R/T  much of the solution is 
quantitatively identifiable as displaced r-walls (see figure 1) .  

2.3. Zero anisotropy : strict solitons 

The zero-anisotropy field limit T = 0, V # 0 ,  R # 0, was actually first solved by Hasi- 
mot0 (1972, Lamb 1976,1977), because the problem of vortex filament motion treated 
by him is formally identical with the spin problem here, where the torsion vector is 
identified with the spin vector. The single-soliton solution, however, follows quite 
directly from (2.14). 

With T = 0 the substitution y =sin p in (2.14) gives (cf Tjon and Wright 1977) 

y = sin p = b sech[bR’/2(x - xo - vt)],  

b 2 = 1 -  V 2 / 4 R = l - ~ ~ ~ 2 p o ,  

cos 6(x, t )  = 1 - 2b2 sech2[bR’’2(x - xo - vr ) ] .  

(2.20) 

with 

(2.21) 

where 2p0 is the maximum &variation at the centre of the translating pulse (2.20). Thus 

(2.22) 

The &variation is necessarily coupled to a +variation. For, using (2.1 1)  with a l  = Sv, 
we find 

4(x,  t )=#o+Rlt+)V(x-xo-vt)+tan-*{b(l  -b2)-’” tanh[bR’/’(x -xo-vr)]}. 
(2.23) 

Tjon and Wright (1977) have shown that the constants of motion for this coupled 
nonlinear solution are 

MO = 4bSR1/2, Po = 4spo. 
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Also the energy 

E = dx % ( x )  = 4JSzbfl”2 +4JSbflnofl-1’2. 

We note that the @-pulse (2.22) has increasing width, decreasing amplitude and 
decreasing energy as b + 0 (cf figure 2 ( a ) ) .  In this it is similar to the so-called ‘breather’ 
solutions to another fashionable nonlinear equation, the sine-Gordon equation 
(Bullough et a1 1978). This is not surprising because the high-frequency (small- 
amplitude) breather solutions can be shown (Kaup and Newel1 1978) to be equivalent to 
the soliton solutions of the nonlinear Schrodinger equation to which the excitation 
(2.22), (2.23) is directly related (Lakshmanan 1977, Lamb 1977, Takhtajan 1977) (see 

150, I I I I 1 

Figure 2. Finite anisotropy ( T )  8-pulse solutions ( 5  2.4): zero velocity, V = 0;  (6) finite 
velocity, V2 = 213. The solutions are symmetric about the origin (5  = 0).  Note that the 
singularity at C = 0 is removed in case (6). 
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below). Furthermore the breather solution can also be viewed as a bound state of 
soliton and anti-soliton (cf the remarks above). The 4-variation (additional to the 
rotation RI) also tends to zero as b + 0, and the translation velocity Y maximises 
(Y +4JS1’2). The analogue to the latter in the sine-Gordon breather case is rather that 
an internal oscillation frequency maximises-translation velocity and amplitude are 
independent, and the present soliton differs in this sense. It is interesting to note the 
nonlinear dispersion exhibited by the present pulse soliton (Lakshmanan et a1 1976, 
Tjon and Wright 1977): 

E = 8JS3M01 (1 - COS(Po/2S)1 +MoRo. (2.24) 

As in the sine-Gordon case this sector of solution space is distinct from the continuum 
mode (‘linear magnon’) sector, but also merges continuously with it in the limit b + 0. 

The large-amplitude (Po+ 7r/2, b + 1)  limit of (2.22) (cf figure 2 ( b ) )  corresponds to a 
narrow pulse (width - with V + 0 and maximum energy and magnetisation M. 
Similarly the corresponding &-variation (2.23) is greatest. Although singular for V = 0 
(de/dx is discontinuous), this is an especially interesting regime to study analytically 
and numerically when 7 # 0. We have already seen one possible continuation to 7 # 0 in 
0 2.1. (Note that dO/dx at x = 0 agrees with (2.19).) A second possibility will be 
described in § 2.4 which is also valid for V # 0. 

The single-soliton solution is readily shown to agree with the result obtained by 
Hasimoto with suitable re-identifications of parameters (see equation (3.19b) of 
Hasimoto (1972)). More importantly the solution is now known to be a strictsoliton in a 
precise mathematical sense (Bullough et a1 1978), since the spin equation of motion in 
the isotropic limit has been shown (Lakshmanan 1977, Lamb 1977, Takhtajan 1977) to 
be exactly soluble by the canonical ‘inverse spectral transform’ or related techniques 
(e.g. as a Riemann problem (Zhakarov and Manakov 1979)) (see also § 4). The most 
direct demonstration has been given by Takhtajan (1977): the parameters (xo ,  v, R,, c$~) 

required for complete specifications of solution (2.22), (2.23) then arise as the asymp- 
totic scattering data of an associated linear eigenvalue problem, providing a natural 
new set of dynamical variables or generalised action-angle variables (cf Bullough et a1 
1978). (The external magnetic field can be scaled out, as is implicit in the form 
R=Ro+&.)  Further, this result means that an arbitrary solution (subject to weak 
boundary conditions) can always be decomposed in to a finite number of identifiable 
nonlinear normal modes (solitons and a continuum sector), depending only upon the 
initial conditions. We are thus no longer limited to the single-soliton solution above, 
but interactions between component nonlinear modes are of a purely asymptotic 
phase-shifting form and therefore surprisingly tractable. This remarkable feature has 
been used elsewhere (see Bishop 1978b) to develop the statistical mechanics of other 
totally integrable nonlinear Hamiltonian systems. Similarly here, it provides the means 
of formulating the statistical mechanics of the classical Heisenberg chain, as will be 
described elsewhere. 

2.4. The general solitary-wave solution 

If we retain finite anisotropy as well as the conditions for § 2.3, we can find an analytic 
solitary-wave solution to (1.1) as follows. From (2.14) with p = $8, we have 

v2 T p: = R tan2 p cos2 p --+- cos4 p).  ( 4R R (2.25) 
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Putting z =sin2 p (substitution of z = tan2 p is equally convenient), (2.25) reduces to 

dx = *(d2/22)[R(l -z ) - :V~+TZ~]- ’ /~ ,  (2.26) 

where we have introduced boundary conditions cos 0 = +1 as 1x1 + 03. Form (2.26) can 
be integrated (Gradshteyn and Rhyzik 1965) once more, with the result 

tanh[ f 2(x - xo - vr)(R + 7 -a  V2)’’2] 

This form is valid for (n + T -$V2) > 0; otherwise the tanh becomes tan. The pro- 
pagation velocity is thus limited to I V / < ~ ( R + T ) ” ~ .  Equation (2.27) can be solved 
explicitly in the surprisingly simple form 

(2.28) sin2(&9) = 2a2/[  y + (a2 + T V ~ I ’ ’ ~  cosh( f 2af)3, 

where we have used the notation 

a =(n+7-$V2)1’2,  y = 0 + 2 7 ,  f = x -xo- vr, 

and omitted unphysical solutions to (2.27). 
Both (2.2) and Q 2.3 agree with (2.28) in their respective limits V + 0 and 7 + 0. We 

can now learn much more, however. The solitary-wave solution is evidently symmetric 
(modulo 7) about f = 0, and we find easily that e( f  = 0) = f 7 only if V = 0. Further- 
more it is readily shown that f = 0 is the only point for which e(5 )  = * 7. Thus 2r-walls 
as in Q 2.2 can only be static as pure and constant-velocity solitary waves. The pulse 
soliton, on the other hand, can move and is to be considered the continuous defor- 
mation of the pure soliton pulse (7 = 0) of 0 2.3, for which numerical evidence has been 
given by Tjon and Wright (1977). (The bifurcation at V = 0 might be related to partial 
signatures of multiple modes which they also observed numerically.) For V = 0 and 
r/n # 0 the pulse amplitude is still T but its shape is modified, although the singularity 
at the pulse centre remains (figure 2(a)) with exactly the same gradient ( f 2R1/2) (cf 
Q 2.2). (Note that the 27-wall solution removes this discontinuity (figure l).) For V # 0 
the pulse amplitude is increased (7 > 0) towards 7 and we find 

s in2P( f=0 ,  7 # O ) = ( 2 7 ) - ’ [ y - ( y 2 - 4 7 a 2 ) 1 ’ 2 ]  

=sin2 p(5 = 0 , ~  = 0)+(V4/16C12)7/fl+0(7/S1)2. (2.29) 

It is again instructive to view this finite-anisotropy solution as a state of two 
conventional 7-walls (0 2.1) stabilised by the field. In contrast to 0 2.2, however, we are 
here concerned with a composite wall and anti-wall structure. For a= 0 these suffer an 
attractive short-range interaction (Rubinstein 1970) and would collapse, but the finite 
field allows them to stabilise at finite separation with some local distortion (and to 
translate with a uniform centre-of-mass motion). As T/Q increases, the separation now 
decreases (contrast 0 2.21, and the region of the structure (around its centre) which 
deviates from the pure 7-wall (anti-wall) also decreases. In fact the structure is 
essentially that of the 7-wall for 

(2.30) 

For all V, as r/n + a, e(5) -, 0 exce9t for O(0) + T (cf (2.29). As ~ / n  + 0, the pulse 
widens and its width is controlled by n-1’2 as in 0 2.3 rather than 7-l” ( 0  2.1). We note 

cosh(2al) >> (1 + 27/i2)/(1+ T V ~ / ~ ’ ) ’ / ~ .  
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again that the limiting gradient at the pulse centre (5 = 0) is independent of T even in the 
singular limit V = 0: the field always controls behaviour sufficiently near 8 = 7. These 
features are all summarised in figure 2. The 6,-variation corresponding to (2.23) follows 
directly from (2.10) and (2.11). 

We have not yet examined the stability of these various solutions. The pulse mode is 
likely to be stable in view of its known stability at T = 0 ( V  # 0). The 27r-wall is less 
clear. It may be susceptible to break-up into 7-walls (and spin waves), but the present 
solitary-wave analysis does not exclude an accelerating motion (cf 03) or motion with 
internal dynamics. 

3. Dynamic domain walls 

We have seen in 0 2.1 that constant-velocity 7-domain wall solutions to (1.1) exist only 
if V = 0 and 0, = 0. A collection of such walls may simply be unstable towards collapse 
into pulse solitons and spin waves even with finite anisotropy (T), as is proven to be the 
case for T = 0 and boundary conditions 8 + 0 as 1x1 + a3 (Takhtajan 1977). Certainly a 
continuously deformed pulse solitary wave branch exists (equation (2.27)) for T # 0, but 
so far we have only considered a single solitary wave, and more interesting general 
solutions will need to be investigated. The absence of single-wall solutions for V f 0 or 
no # 0 followed directly from (2.14) because we could no longer satisfy the appropriate 
boundary conditions: 8,(*m) = 0, 8(+m) = f 7, 8(0) = 0. Physically the point is that 
these conditions can be satisfied when there are terms with .rr-degeneracy (i.e. T cos 28) 
in the equation of motion, but not with a 27-period (e.g. Ro cos 8). In the first case 8, 
(equation (2.14)) is proportional to (1 -cos e)( 1 + cos 8) which can be zero at 8 = 0 and 
7, whereas in the second case 8, only contains a term proportional to 1 -cos 8, and the 
second boundary condition cannot be satisfied. 

The dynamics of 7-domain walls are nevertheless of very practical concern in real 
materials. Therefore in this section we examine the two most popular prototype 
treatments of wall dynamics due to Walker (1963) and Enz (1 964). Our main purpose is 
to cast these two approaches into the logical framework adopted in 0 2, so that we can 
see clearly the way in which they avoid the problem exposed there, and also to define 
their approximations and limitations. Again we consider only single-wall solutions, and 
the general solution remains to be explored. 

( a  j Walker’s solution (1963) 

Here the wall is assumed to lie in the yz plane, 8 is the angle S makes with the z axis and 
4 is the angle of rotation of S about this axis. The wall is assumed to move in response 
to an applied magnetic field Ro, and its motion is allowed to be damped through the 
inclusion of a phenomenological (Landau) damping factor a (Landau 1965). 

X ( x )  = 27rS’ sin’ B cos2 4 -+JTS’ cos’ 8 + RoS cos 8 + $JS2(sin’ 84; + 8:). 
The ensuing equations of motion are (introducing the phenomenological damping) 

8, -aq& sin 8 = (sin 8)-’[47S sin2 8 sin 4 cos 4 - JS(d/dx)(sin2 84,)], 

The energy of magnetisation is written as E = dx X ( x ) ,  with 

(3.1) 

(3.2) 

(3.3) 4, sin 8 +ad, = 47rS sin 8 cos 8 cos2 q5 + JTS sin 8 cos 8 - Ro sin 8 

+ JS sin 8 cos 84: - JS8,,. 
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If we assume that 4, = 0 = 4,, then 4 = 40 = constant. Then from (3.2) we have 

8, = 4 r S  sin 8 sin 4o cos q50, 

et, = 4 7 r ~  cos e sin 4o cos 4oe, = (477s cos do sin do)’ sin e cos e. 
(3.4) 

(3.5) 

Substituting (3.4) into (3.3) gives 

a47rS sin 8 sin q50 cos 4o = (4rS cos2 b0+JrS) sin 8 cos 8 -no sin 8 -JSO,,. 

Then (3.5) in (3.6) gives 

(3.6) 

sin e(47rsa sin 40 cos 40+ no) =JS(ci2ett - e,,), 

c i  = J S ( ~ ~ S  cos cb0 sin 4 0 ) 2 / [ 4 r ~  cos2 4 0 + ~ r ~ I .  

(3.7) 

(3.8) 

where 

We now look for solitary-wave solutions 6 = e ( x  - vt). The only way to satisfy wall 
boundary conditions is to set the left hand side of (3.7) equal to zero. Then 

flo/a = -47rS sin q50 cos 40 (3.9) 

and 

e,, = (n0/a)’ sin e COS e. 
It now follows from (3.6) that 

e,, - (Js)-’(a/n0)~(4rs cos2 40+JrS)err = 0. 

2 cos2 40 = 1 f [ l -  (no/2a7rS)21’’2, 

However, (3.9) gives 

so that we can re-express (3.8) as 
$k[q-[l-(&) 2 ] 1/2 1 + ~ ] 1 ,  
CO Jr 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where we have chosen the negative square root to agree with the solution given in 0 2.1 
when no + 0 (flo/aco + T’’~).  The solution becomes imaginary for no > 2.ncuS. 

From (3.11) 

(3.14) 

This is the wave equation and has solutions 6 = 8(x  f cot). However, we have to satisfy 
(3.14) and (3.4) simultaneously where a solution 8 = e ( x  - vt) is sought to (3.4). To be 
consistent we require v = co, whence the dynamic domain wall solution is (cf 0 2.1) 

2 c~fl,, -err = 0. 

C O &  = (no/a) sin 8, 

i.e. 
(3.15) 

cos 8 = tanh[(no/aco)(x -cot) ] .  (3.16) 

( b )  Enr’s Solution (1964) 

Enz introduced several drastic assumptions which, however, have the attractive feature 
of leading to the much studied dynamic sine-Gordon equation (Scott et a1 1973, 
Bullough et a1 1978). His assumptions were: (i) a = 0 (no damping); (ii) 141 << 1;  (iii) 
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terms such as 4: in (3.3) can be neglected. Then, from (3.2) and retaining only terms to 
0(4), we have 

(3.17) 

(3.18) 

Inserting (3.18) in (2.8) with a =0,  but including a pole term of the form 
-27rs’ sin2 e cos2 4, gives 

e,, = -(47rs)’sin e cos e -47r~~s’s in  e cos e - 4 . n ~ ~ ~  sin e + 4 ~ ~ s ’ e , , .  (3.19) 

Equation (3.19) is similar to that appearing in 0 2.2. (Interestingly (3.19) is formally 
identical to the ‘double sine-Gordon’ equation appearing in descriptions of resonant 
optical media (Bullough eta1 1978), excitations in the B-phase of superfluid 3He (Maki 
and Kumar 1976), etc.) As in 9 2.2 there are no 7r-domain walls unless no = 0, when 

(3.20) 

Equation (3.20) reduces to the static result (2.18) in the limit 47rJS’ >> 1, as it should. 
Result (3.20) is the very familiar sine-Gordon equation (Scott et a1 1973) which 

interestingly also belongs to the class of systems totally integrable by means of the 
inverse scattering transform. Thus arbitrary solutions can again be constructed. The 
single-domain wall corresponds to a single soliton and is readily computed. We set 
c: = 47rJS’ and seek a solitary-wave solution with wall boundary conditions. The 
‘pseudo-relativistic’ ( c 1  t* ‘speed of light’) generalisation of (2.17) follows easily: 

(3.21) 

8, = 4rS sin 8 sin 4 cos # = 477s sin 84, 

8, = 4 7 s  sin 04,. 

e,, - (1/47rJS’)err = (sin 26/87rJS2)[(47rS)’ + 4rJ~S’l. 

cos e ( x ,  t )  = tanh[[(x - v t ) ] ,  

with 

(3.22) 

From (3.17) and (3.21) we find the requirement sin 2# = -2[/47rS. Thus this pro- 
cedure is self-consistent provided that 

I[/ << 27rs. (3.23) 

The conclusion from these two approaches is that a single, non-accelerating domain 
wall solution is only possible in the presence of a magnetic field if 4, = CpX = 0. In Enz’s 
solution (3.21), 4 is in fact allowed to vary (but is required to be small); however, the 
solution is immediately invalidated by a magnetic field. The conditions of validity are 
rather restrictive, and, since only free wall motions can be accommodated, the interes- 
ting experimental observations (see de Leeuw 1977) of field-dependent wall velocities 
cannot be addressed. It is physically clear that to achieve a terminal wall velocity we 
need damping in addition to the field (cf Fogel et a1 1977, Bishop 1978a), and Walker’s 
procedure shows how the appropriate velocity derives from a balance of these two 
affects. It will be interesting to reproduce Walker’s solution (at least for small fields) by 
treating the field and damping terms as perturbations to the exact sine-Gordon soliton 
(3.21). This is also true for the effects of defects and other parameter inhomogeneities 
(Bishop 1978a, McLoughlin and Scott 1978). 

Note that in Walker’s solution the wall velocity must be less than a ‘critical’ value 
given by (3.13), depending on the relative magnitudes of damping and applied field. The 
solution is, however, forced from a single solitary-wave ansatz for a strongly driven 
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nonlinear equation. The nominal critical velocity is larger than observed experiment- 
ally (de Leeuw 1977), and it is amusing to speculate that more complex nonlinear 
excitations may in fact appear, especially near the critical velocity. Such behaviour has 
been postulated near thresholds in other driven nonlinear systems (Nakajima et a1 
1974). In view of our knowledge of the pulse soliton and 27r-wall solutions of 0 2.4, we 
might, for example, expect wall break-up, annihilation, or slowing down through the 
creation of finite-anisotropy pulses (cf soliton ‘tailing’ in the driven damped sine- 
Gordon system (Nakajima et ul 1974) or vortex tailing in turbulent flows). Recall that 
the large-amplitude pulses have low velocity. These intriguing possibilities await 
further numerical investigation. 

4. Conclusions and discussion 

In this work we have examined excitations in the continuous-spin, classical Heisenberg 
ferromagnetic chain, with and without (uniaxial) anisotropy. We have limited our 
present analysis to single, solitary-wave solutions, i.e. with a single translational velocity 
aspect (except for certain intrinsic uniform angular rotations-see (2.23)). Thus we 
have not considered N solitary waves or more general solutions. We note, however, 
that the pulse soliton, obtained with zero anisotropy (0 2.3), required 4 # constant. 
This solution could be continuously deformed for finite anisotropy ( 0  2.4), but in that 
case there is also the possibility of a different sector of domain wall excitations; but these 
were only possible with a constant velocity in an external field if damping was 
introduced and if C#I = constant (03(a)). This incompatibility suggests that if these 
modes can exist simultaneously (as a time-dependent composite excitation), then a 
nontrivial (nonlinear) interaction will be operative. It will be especially interesting to 
study this possibility numerically, particularly regarding collision processes (including 
damping and an applied field). 

Complete solubility appears to be restricted to the isotropic limit, where the inverse 
spectral transform (IST) formalism is applicable, yielding a complete solution to the 
arbitrary initial value problem. Several authors (Lakshmanan 1977, Lamb 1976,1977) 
have recently noted how the complete solubility follows by mapping the evolutions of 
energy and momentum densities onto the nonlinear Schrodinger equation, and 
subsequently deconvoluting the energy-momentum spectrum to yield excitations in the 
spin variables themselves. (This approach is directly related (Lamb 1977) to the motion 
of a special helical curve and is equivalent, for example, to the analysis of vortex 
filament motions in an incompressible inviscid fluid (Hasimoto 1972). A variety of 
related techniques follow (Lakshmanan 1978, Zhakarov and Manakov 1979), e.g. 
pseudopotentials, prolongation structures, fibre bundle theory, reduction to action- 
angle variable form, formulation as a Riemann problem, etc. The most direct relation- 
ship with the IST framework has been given recently by Takhtajan (1977), who showed 
how the nonlinear equations of motion for the spin variables themselves can be 
associated with an auxiliary linear scbttering operator of the (two-component) Zhak- 
arov-Shabat type, with an evolution operator of suitable (Lax) form in the inverse 
scattering procedure (Bullough et a1 1978). In this way the general solution may be 
expressed in N-soliton form with all the remarkable properties associated with such 
completely integrable Hamiltonian systems (Bullough et a1 1978)-e.g.  the existence of 
an infinite number of constants of the motion, of which field energy, momentum and 
magnetisation are three in the present case (see Q 2). It should be emphasised that all 
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such properties are strictly valid only for the infinite, one-dimensional, continuum 
model with boundary conditions & + O(mod 27r) as 1x1 + 00. Interestingly the nonlinear 
Schrodinger equation also governs modulations of the linear spin waves if only weak 
nonlinearity is included as a perturbation (Corones 1977). 

It is a simple matter (Takhtajan 1977) to incorporate an applied field in the isotropic 
Heisenberg ferromagnet while retaining the IST technique. However, it has not yet 
proven possible to apply this technique in the presence of anisotropy fields necessary for 
domain walls. It is possible to formulate a perturbation theory with respect to the 
isotropic limit, by considering the motion of eigenvalues of the linear scattering 
operator introduced in the IST theory (see Newel1 1978). Such an approach is being 
studied presently. Clearly it is topologically impossible that the single pulse soliton and 
single domain wall could be continuously deformed into each other: they are quite 
distinct solution types with different boundary conditions. However, it is possible that 
pulse solitons with amplitude - T (  V - 0) will deform continuously into a wall-anti- 
wall pair in the presence of anisotropy and appropriate perturbations. Further analysis 
of these speculations and of general nonlinear solutions awaits the results of detailed 
numerical and analytical (e.g. perturbation) studies. Again we have not investigated the 
stability of the excitations, although linear stability analysis for the single solitary waves 
considered here is operationally straightforward (Scott et a1 1973), since we have their 
analytic form. (Stability is guaranteed for T = 0.) 

Our ultimate purpose in studying the elementary excitations in the continuum spin 
Heisenberg system is to use them to formulate a configurational phenomenology at 
finite temperatures (i.e. statistical mechanics), as has been done with other nonlinear 
systems (see Bishop 1978b). This would serve to emphasise physically distinct excita- 
tion contributions, particularly to static and dynamic response functions, and would be 
of practical and conceptual importance both experimentally and theoretically. These 
features are unlikely to be adequately represented in conventional linear theories and 
finite-order perturbations in linear modes. Similarly, conventional interpretations of 
experimental response probes of magnetic structure (neutron, x-ray, etc) are based on 
linear (or weakly anharmonic) prejudices and will have to be modified to be diagnostic- 
ally receptive to possible local or other nonlinear excitations. Many theories of dynamic 
response functions in (one-dimensional) nonlinear models (Krumhansl and Schrieff er 
1975, Kawasaki 1976, Mikeska 1978) have only partial validity, since they omit the 
crucial features of mode interactions in these non-superpositional problems. In future 
work we will formulate a configurational approach to the (static and dynamic) statistical 
mechanics of the isotropic continuum Heisenberg ferromagnetic chain, using the 
separability into nonlinear normal modes (available via IST) as has been done elsewhere 
(Bishop 1978b) for other separable nonlinear systems. 

Accurate information is especially relevant in this area in view of the experimental 
accessibility of (and continuing activity in) quasi-one-dimensional spin systems (Steiner 
et a1 1976, Kjems and Steiner 1978). Classical ferromagnetic systems are available?. 

+ Here we are emphasising the nonlinear interest in a ferromagnetic isotropic Heisenberg chain in a magnetic 
field. There is already complementary interest in the nonlinearity exhibited by one-dimensional planar 
ferromagnets (e.g. CsNiF3) in a suitable field (Kjems and Steiner 1978). This system is related to a 
sine-Gordon-like model and exhibits strong soliton features in its statistical mechanics, since there is a gap in 
the excitation spectrum. The gapless spectrum of nonlinear modes in the present isotropic case ((2.24)) will be 
more subtle-cf breather excitations in the sine-Gordon system (Stoll et ai 1979), although there gaps do 
remain, depending on the breather frequency. The anisotropy of 6 2.4 also induces a gap, but for K > 0 there 
is Ising not XY symmetry. 
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Even more numerous are examples corresponding closely to one-dimensional classical 
Heisenberg antiferromagnets (Steiner et a1 1976). Unfortunately the IST procedure 
does not seem to extend directly to this case. We note, however, that a recent study 
(Buttner and Bilz 1978) of the acoustic and opticphonon branches in a one-dimensional 
model with two atoms per unit cell has shown that each branch can be approximately 
associated with a different nonlinear equation (the modified Korteweg-de Vries and 
q5-four equations respectively (see Bullough et a1 1978)). In this case it was necessary to 
retain terms to quartic order in a continuum representation. A similar approach may 
also be profitable for the antiferromagnetic spin system. 
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Notes added in prooJ Since the completion of this work we have received a preprint (Fogedby 1978) which 
also exploits the complete integrability of the classical isotropic continuum Heisenberg chain. Following the 
work of Takhtajan (1977), Fogedby exhibits the separable Hamiltonian structure (in continuum and soliton 
modes) in terms of generalised action-angle variables, as advocated in 88 2.3 and 4. As we have indicated, 
this provides the starting point of a natural configurational representation for the statistical mechanics of the 
system, an approach which we shall describe in detail in a subsequent article. 

Also, very recently it has been shown explicitly (Zhakarov and Manakov 1979) that the present isotropic 
Heisenberg system is a simple natural reduction of a generalised matrix nonlinear Schrodinger equation, 
which is itself completely integrable (cf comments in the text). 
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